
babyideuserguide.docx 2020-11-13 1 of 16

 BabyIDE user guide
Trygve Reenskaug

Table of contents

1 BabyIDE Image ... 3

2 Ellen's smart alarm .. 3

2.1 Run the demo ... 3

2.2 To do a demonstration: ... 4

2.3 Read Ellen's program .. 4

3 DCI Examples ... 4

3.1 BB2Shapes ... 4

3.1.1 Run the program: ... 4

3.1.2 Edit the program: ... 5

3.1.3 Read the program .. 5

3.2 BB3Greed ... 5

3.2.1 Run the program: ... 6

3.2.2 Edit the program: ... 6

3.2.3 Read the program .. 6

3.3 BB4Plan .. 6

3.3.1 Run the program: ... 7

3.3.2 Edit the program: ... 7

3.3.3 Read the program .. 7

3.4 BB5Bank ... 7

3.4.1 Run the demo program: ... 8

3.4.2 Edit the demo program:.. 9

3.4.3 Read the demo program .. 9

3.5 BB6PayBills .. 9

3.5.1 Run the program: ... 9

3.5.2 Edit the program: ... 9

3.5.3 Read the program: ... 9

3.6 BB7 - the Dijkstra Algorithm .. 9

3.6.1 Run the program: ... 10

3.6.2 Edit the program: ... 10

babyideuserguide.docx 2020-11-13 2 of 16

3.6.3 Read the program .. 10

3.7 BB8 - MoveShape example ... 10

3.7.1 Run the program: ... 11

3.7.2 Edit the program: ... 11

3.7.3 Read the program .. 11

3.8 BB9Planning: An Activity Planning Example (aka Prokon) 11

3.8.1 End-User Mental Model ... 12

3.8.2 Program Architecture ... 12

3.8.3 Run the program: ... 13

3.8.4 Edit the program: ... 13

3.9 BB10: Frame ... 13

4 Squeak Reverse Engineering (SRE) ... 14

4.1.1 Edit the Program .. 14

4.2 The SRE Context browser ... 14

4.3 SRE Object Inspector .. 15

5 Persistent workspace .. 15

5.1.1 Open a new persistent workspace ... 16

babyideuserguide.docx 2020-11-13 3 of 16

BabyIDE image user guide

BabyIDE is my program repository that includes all my Squeak
programs. This user guide is made up of many snippets from a variety of
sources without careful editing or review. Some of the texts have been
hard to find. I hope you find this guide useful for navigating the image.

1 BabyIDE Image
BabyIDE1 Squeak image
http://dx.doi.org/10.17632/5xxgzv7fsp.1

Download the ZIP and unzip into an empty folder.
In Win 7/10, double-click Squeak.exe.
In other OS, open the image according to the rules of your system.

Note. Use BabyIDE to export a program as an HTML-file
BabyIDE>>window menu>>printHTML for this app
These reports are referenced in the read the program subsections of the
different program descriptions.

2 Ellen's smart alarm
This is the smart alarm clock program that Ellen wrote in a demo. The
clock only wakes her if the weather forecast promises a dry day. The
Personal Programming and the object computer article describes this
example with its code in detail:
(https://doi.org/10.1007/s10270-019-00768-3) in section 2: Novice
programming and in the appendices.

The completed demo is open in the image when you open it.

2.1 Run the demo
World menu>>open…>>BBa11: PP

opens Ellen's IDE, a personal programming version of BabyIDE that is
created for demonstration and exploration purposes. The IDE starts with
Ellen's program on the screen.

There are 2 projections Context and Data. The Data projection specifies
Data classes; their instances are Ellen's predefined objects. Objects that

http://dx.doi.org/10.17632/5xxgzv7fsp.1
https://doi.org/10.1007/s10270-019-00768-3

babyideuserguide.docx 2020-11-13 4 of 16

reify their API and that provide the metadata supporting the illusion of
RESTful servers.

The Context projection has the usual 2 views: The Context class view is
automatically generated when Ellen moves an object into her Context.
The Context interaction view is Ellen's programming tool, where she
augments the roles with her role methods.

2.2 To do a demonstration:
1. open Context>>EllenAlarmCtx>>interaction view. In the role

diagram (outside the roles), do yellowmenu>>open data window.
This opens a new window with Ellen's resource objects. Here it's
only 3, in a reality it should be hundreds.

2. For each role, do yellowmenu>>remove role
3. and the demo can start as described in the article

2.3 Read Ellen's program
View for reading
View for printing

3 DCI Examples
The examples were part of the first release of BabyIDE. They are first
shots at the implementations. The hope was that each of them should
form a starting point for discussing the solution to find better ones. This
did not happen; there was no noticeable interest in BabyIDE at the time.
(Caused by my feeble marketing)

3.1 BB2Shapes
An animation of a universe of interacting objects

3.1.1 Run the program:
World menu>>open…>>BB2: Shapes
yellow menu in the window:

• animate shapes illustrates a universe of objects where objects are
added and removed. The shape of an object represents its class,

• animate roles illustrates repeated execution of the same operation:
Different objects are allocated to roles and interact according to
the same DCI algorithm,

• animate chaos arrows illustrates chaotic message flow, controlled
by some unknown program.

http://heim.ifi.uio.no/trygver/assets/BBa11PPEllen/readableVersion.html
http://heim.ifi.uio.no/trygver/assets/BBa11PPEllen/printableVersion.html

babyideuserguide.docx 2020-11-13 5 of 16

(ALT-. stops the execution if BB2Shape hangs).

3.1.2 Edit the program:
World menu>>open…>>BB1: IDE>>BB2Shapes. BabyIDE is a browser
that lets you edit any program written according to the DCI (Data,
Context, Interaction) paradigm. More details about DCI and this browser
is in the Personal Programming article
https://doi.org/10.1007/s10270-019-00768-3

3.1.3 Read the program
reader-friendly version
printer-friendly version

3.2 BB3Greed
This example illustrates a program with 8 Data classes and executions
with loops within loops.

Greed is an exceedingly dull game, yet it is well suited as a
programming exercise. Tom Love gave it as a programming exercise for
an OOPSLA-89 workshop. There were many submissions of working
programs. (I had one of them based on role modeling. Tom has later reported that
my program didn't work. It actually did work, but I deemed its user interface to be too
ugly for me to demo it at the time at our workshop. You can now run it and judge for
yourself).

The use case is here:
http://fulloo.info/Examples/SqueakExamples/BB3Greed/index.html

The rules are:

Greed is a dice game played by two or more players. The game's object
is to tally points from the rolls of the die and be the first player to score
5000 points. There are five dice in the game; they are rolled from a cup.

To enter the game, a player must score at least 300 points on the first
roll of his turn; otherwise, the player is considered "bust." If he goes
"bust," he must wait until his turn to roll again. If his first roll does
produce 300 or more points, the player then has the option of stopping,
thus keeping the initial score, or continuing. To continue, the player rolls
only the die that has not yet scored in his turn. A player may continue
rolling until all the dice have scored or until he is "bust." Except for the
entry roll, a "bust" is when an individual roll produces no points. The
player may stop and keep his score after any roll, as long as he is not
"bust."

https://doi.org/10.1007/s10270-019-00768-3
http://fulloo.info/Examples/SqueakExamples/BB2Shapes/readableVersion.html
http://fulloo.info/Examples/SqueakExamples/BB2Shapes/printableVersion.html
http://fulloo.info/Examples/SqueakExamples/BB3Greed/index.html

babyideuserguide.docx 2020-11-13 6 of 16

Each roll of the dice is tallied as follows:

Three of a kind score 100 x face value of one of the three dice. If the
three of a kind are 1s, then it is scored as 1000. 22234 = 200 points;
43414 = 400 + 100 = 500 points. Single 1s and 5s score 100 and 50
points, respectively.

3.2.1 Run the program:
World menu>>open…>>BB3: Greed
The top row of the window has a comment pane, a Play button, and an
array of 5 numbers representing the 5 dice. Dice that have scored are
red. Below are 3 panes, one for each automatic player who has its own
strategy for playing the game.
Press Play to start the game and observe the dice and the results in the
comment pane.

3.2.2 Edit the program:
World menu>>open…>>BB1: IDE>>BB3Greed. There are 3 projections:
Context, Controller, Data.

3.2.3 Read the program
reader-friendly version
printer-friendly version

3.3 BB4Plan
This example is a rudimentary activity planning application.

There is no user data input; the example network is hardcoded.

Two versions of this application are discussed here. The versions are
opened in Squeak from the World Menu>open>BB4xPlan, where
x is a or b:

BB4aPlan: A conventional application with MVC, without DCI.
BB4bPlan: The application coded with MVC and DCI.

Both versions are identical from the user's point of view. Both open a
window with two Views, as shown in the figure below. The top view is a
dependency graph that shows the activities with their technological
dependencies. The duration of each activity is given in parenthesis after
the activity name. The bottom view shows a Gantt diagram with the
frontloaded activities laid out along the time axis.

http://fulloo.info/Examples/SqueakExamples/BB3Greed/readableVersion.html
http://fulloo.info/Examples/SqueakExamples/BB3Greed/printableVersion.html

babyideuserguide.docx 2020-11-13 7 of 16

Note. BB9Planning: An Activity Planning Example (aka Prokon) is a more elaborate version
that demonstrates the use of MVC and DCI in combination.

3.3.1 Run the program:
World menu>>open…>>BB4b: Plan
A window with 2 panes open. Three menu operations are in the upper
pane:

• build a demo network: Build the demo activity network and display it as a
dependency graph.

• frontload from week 1: Frontloading computes the earliest start for all
activities. An activity can start when all its predecessors are finished.

• reset demo: Remove the current network.

3.3.2 Edit the program:
World menu>>open…>>BB1: IDE>>BB4bPlan. There are 4 projections:
Context, Controller, Data, View. Notice that the object structure is
traditional MVC.

3.3.3 Read the program
BB4aPlan (no DCI):

reader-friendly code
printer-friendly code

BB4bPlan (DCI version)

reader-friendly code
printer-friendly code

3.4 BB5Bank
This program illustrates a simple Context with two interacting Roles.

http://fulloo.info/Examples/SqueakExamples/BB4aPlan/readableVersion.html
http://fulloo.info/Examples/SqueakExamples/BB4aPlan/printableVersion.html
http://fulloo.info/Examples/SqueakExamples/BB4bPlan/readableVersion.html
http://fulloo.info/Examples/SqueakExamples/BB4bPlan/printableVersion.html

babyideuserguide.docx 2020-11-13 8 of 16

James Coplien has implemented a DCI infrastructure in C++. He has
also developed a simple program that illustrates the DCI essentials.
BB6Bank is the Squeak/DCI code for roughly the same problem.

The use case is that a human uses an Automatic Teller Machine (ATM)
to transfer funds from her checking account to her savings account. She
knows that her checking account is account number 1111 and that her
savings account is account number 2222. The amount she wants to
transfer on this occasion is $500. The use case operation is the transfer
of money from one account to another. We follow the DCI paradigm and
organize our code in the two essential projections; Data and Context.
The Interaction is the dynamic part of the Context. We also have a
Testing projection where the BB5Testing class drives the program.

In the core of banking, we find the General Ledger (GL), a collection of
transactions where each transaction documents the transfer of a value
from one account to another (or "transfer a quantity from one resource to
another" in modern parlance). Transactions are immutable by law and
international conventions. Like any database record, a transaction has
no behavior. The system behavior (use case) in our example is
constructing a transaction from the input data. This behavior is not part
of the GL (what the system IS) but is part of the bank transfer application
(what the system DOES).

An essential attribute of an account is its balance, the funds available to
its owner. It is a derived attribute that is computed by summing over
selected GL transactions. We see our account objects as caches on the
GL. Our program's task is to construct a new transaction while applying
the appropriate checks, update the account caches, and add the new
transaction to the GL.

There are two versions of the program. In BB5aBank, the GL is omitted
to make a version suitable for use in short presentations. A companion
version, BB5bBank, includes updating the GL at the end of a successful
transfer.

3.4.1 Run the demo program:
World menu>>open…>>BB5a: Bank runs a test. The response is a
window "Test1 OK". Press OK and get the error window: "Insufficient
funds". Click OK and get: "error: Test2 OK, it has failed as expected".

babyideuserguide.docx 2020-11-13 9 of 16

3.4.2 Edit the demo program:
World menu>>open…>>BB1: IDE>>BB5aBank. There are 3 projections:
Context, Data, Testing.

3.4.3 Read the demo program
BB5aBank (no General Ledger):

reader-friendly version
printer-friendly version

BB5bBank (with General Ledger)

reader-friendly version
printer-friendly version

3.5 BB6PayBills
Uses BB5Bank to pay a list of bills.

The example illustrates that a Context can play a role and be called as a
subroutine in an outer context. (BillPayer::payBills calls the
BankTransfer Context to pay one bill at a time). It also illustrates that a
Collection may play a role.

3.5.1 Run the program:
World menu>>open…>>BB6: PayBills runs a test. The response is a
window "Test OK".

3.5.2 Edit the program:
World menu>>open…>>BB1: IDE>>BB6PayBills. There are 3
projections: Context, Data, Testing.

3.5.3 Read the program:
BB6PayBills:

reader-friendly version
printer-friendly version

3.6 BB7 - the Dijkstra Algorithm
The Dijkstra Algorithm computes the shortest path to all nodes from a
given origin node in a network of Nodes and Edges. This solution is
based on James Coplien's solution written in Ruby, where the network
has a modified and simplified Manhattan geometry. The solution
illustrates the use of recursion rather than a loop.

http://fulloo.info/Examples/SqueakExamples/BB5Bank/BB5aBank-Listing/readableVersion.html
http://fulloo.info/Examples/SqueakExamples/BB5Bank/BB5aBank-Listing/printableVersion.html
http://fulloo.info/Examples/SqueakExamples/BB5Bank/BB5bBank-listing/readableVersion.html
http://fulloo.info/Examples/SqueakExamples/BB5Bank/BB5bBank-listing/printableVersion.html
http://fulloo.info/Examples/SqueakExamples/BB6PayBills/readableVersion.html
http://fulloo.info/Examples/SqueakExamples/BB6PayBills/printableVersion.html

babyideuserguide.docx 2020-11-13 10 of 16

This solution is particularly noteworthy because two Roles
(EastNeighbor and SouthNeighbor) are played by instances of the same
class and have different RoleMethods with the same name
(recomputeTentativeDistance). There is no name conflict because
Squeak/BabyIDE no longer uses RoleMethod injection.

3.6.1 Run the program:
World menu>>open…>>BB7: Dijkstra runs a test. The response is a
window "Test Dijkstra OK. More details in Transcript.".

3.6.2 Edit the program:
World menu>>open…>>BB1: IDE>>BB7Dijkstra. There are 3
projections: Context, Data, Testing. Note that the Context as usual
toggles between 2 views: Class and Interaction. The class view edits the
BB7CalculateShortestPathCTX class that maps objects to roles, sets up
the algorithm variables, and arranges for the recursive execution. The
interaction view specifies the behavior of a node in the network.

Note that the code for traversal of the network with recursion is in the
Context>>class view.

3.6.3 Read the program
BB7Dijkstra:

reader-friendly version
printer-friendly version

3.7 BB8 - MoveShape example
USE CASE.
Consider a Draw program such as a PowerPoint slide editor. A user can
create and place different shapes such as ovals, polygons, lines, and
other shapes. A Connector is a special line that runs from one shape to
another. The line always connects the two shapes, even if the shapes
move. This program implements the shape:move: operation.

There are two versions of this program, BB8aMoveShape, and
BB8bMoveShape. The first version is for demo purposes, and its code is
so simple that it can be explained in a regular talk by being limited to two
shapes and a single connector.

The second version is general and illustrates that a role can be bound to
a collection of shapes. The collection is an instance of
BB1OrderedCollection, a collection that enumerates its members by

http://fulloo.info/Examples/SqueakExamples/BB7Dijkstra/readableVersion.html
http://fulloo.info/Examples/SqueakExamples/BB7Dijkstra/printableVersion.html

babyideuserguide.docx 2020-11-13 11 of 16

mapping them successively to a given role:
BB1OrderedCollection >>with: aRoleName do: aBlock
see
BB8bMoveShape>>Context>>Interaction
view>>LINECOLLECTION>>shapeHasMoved

3.7.1 Run the program:
World menu>>open…>>BB8a: MoveShape. The result is an inform-
window: "Move shape test successful."

3.7.2 Edit the program:
BB8aMoveShape is limited to 2 shapes for demo purposes.
BB8bMoveShape has an unlimited number of connected shapes.

World menu>>open…>>BB1: IDE>>BB8aMoveShape. There are 3
projections: Context, Data, Test.

3.7.3 Read the program
BB8aMoveShape:

reader-friendly version
printer-friendly version

A version without the above restriction illustrates the use of Roles
mapped to collection objects

BB8bMoveShape:

reader-friendly version
printer-friendly version

3.8 BB9Planning: An Activity Planning Example (aka Prokon)
BB9Planning is an extended planning example that illustrates the
combination of DCI and MVC.

Prokon is a simple planning tool; the screen dump below shows its user
interface.

http://fulloo.info/Examples/SqueakExamples/BB8aMoveShape/readableVersion.html
http://fulloo.info/Examples/SqueakExamples/BB8aMoveShape/printableVersion.html
http://fulloo.info/Examples/SqueakExamples/BB8bMoveShape/readableVersion.html
http://fulloo.info/Examples/SqueakExamples/BB8bMoveShape/printableVersion.html

babyideuserguide.docx 2020-11-13 12 of 16

More details in the Personal Programming article
(https://doi.org/10.1007/s10270-019-00768-3), Appendix 1: ProkonPlan,
an example.

3.8.1 End-User Mental Model
An activity represents a task that needs to be done. It has a given
duration; it cannot start before all its predecessor activities are
completed, and it must end before its successor activities can start.

3.8.2 Program Architecture
The program architecture rests on two powerful principles for separation
of concerns: MVC first and DCI second.

The Model-View-Controller (MVC) paradigm is illustrated below.

The Model is a representation of the user's information model. The
magic in the above figure is that the user experiences the computer as
an extension of their mind. The illusion is achieved by faithfully reflecting
the user's mental model in the Model code. The user is in the driver's
seat, and a View bridges the gap between their mind and the Model.

https://doi.org/10.1007/s10270-019-00768-3

babyideuserguide.docx 2020-11-13 13 of 16

Different Views show different aspects of the Model in a way that can be
readily intuited by the human. The human intuition makes it clear how to
give input to the Model through a View. A Controller sets up one or more
Views and coordinates them, e.g., making a selection show itself in all
Views simultaneously.

The Model is again separated into two projections according to DCI; The
Data-Model projection implements the static part of the user's mental
model, while a Context-Model projection implements the operations on
the Model. (Frontloading, backloading, etc.) The Model code is fairly
generic and should be readable to a person with a rudimentary
knowledge of the Squeak syntax.

The user interface (UI) bridges the gap between the human mind and
the computerized Model. Usually, this is achieved by a Controller object
and one object for each View. (Here 5). In Squeak, the classes of these
objects build on its Morphic framework. The code is readable to a person
who is familiar with this framework.

As an experiment, we have separated the static display classes from the
algorithms for operating upon them, such as refreshing their contents.
(Data-UI and Context-UI, respectively). This separation is an experiment,
and it should be possible to find a simpler and more readable form.

3.8.3 Run the program:
World menu>>open…>>BB9: Planning

This command gives the choice of two plans, choose database.1.bb13,
and get a plan similar to the one shown above.

3.8.4 Edit the program:
World menu>>open…>>BB1: IDE>>BB9Planning. 5 projections are
reflecting the program's MVC/DCI architecture:
Controller-Data, Model-Context, Model-Data, View-Context, View-Data.

3.9 BB10: Frame
BB10Frame is an unsuccessful attempt at programming a version of the
Pong game that Jim (Cope) Coplien has implemented in his trygve DCI
programming language.

babyideuserguide.docx 2020-11-13 14 of 16

4 Squeak Reverse Engineering (SRE)
These tools let you study any object and object structure in the current
image.

The program user manual is in

BabySRE, Squeak Reverse Engineering
http://heim.ifi.uio.no/~trygver/themes/SRE/SRE-index.html

4.1.1 Edit the Program
The SRE program code is in the following class categories:

'BabySRE-CClassDefiner', 'BabySRE-Connectors', 'BabySRE-
Info', 'BabySRE-Inspector', 'BabySRE-Model', 'BabySRE-View'

4.2 The SRE Context browser
To do an example, execute
DemoEllipseSRE new openInWorld
and observe that an ellipse with cycling colors appear in the top left
corner. Then do the following:

1. ellipse halo>>Debug>>SRE Context browser.>>new Context
to open a context browser on the ellipse object

2. Place the object [3625] : DemoEllipseSRE in the diagram. (object
identities will vary in different executions)

3. [3625] : DemoEllipseSRE>>yellowmenu>>add link for variable...
>>owner.
and place the owner object: [999] World : PasteUpMorph

Then follow the user manual. As an example, the diagram below has
[2131] : DemoEllipseSRE as its starting point. Note that the oops are
different because the diagram was created in another execution.

http://heim.ifi.uio.no/%7Etrygver/themes/SRE/SRE-index.html

babyideuserguide.docx 2020-11-13 15 of 16

4.3 SRE Object Inspector
The SRE Object inspector differs from the regular inspector in that
inspects the whole object, including all the selectors (methods) it
understands. Notice the multi-select lists for superclasses etc.

Open the halo around demoEllipse>>debug>>SRE object inspector.

5 Persistent workspace
This is a regular workspace that is represented as a .ws-file on disk in
the directory of the image. Expand the third collapsed window from the

babyideuserguide.docx 2020-11-13 16 of 16

top-left on the desktop to see an example: "Welcome
(PersistentWorkspace)"

5.1.1 Open a new persistent workspace
World menu>>open…>>Persistent workspace.

The name of the window is the name of the file with .ws added.

	1 BabyIDE Image
	2 Ellen's smart alarm
	2.1 Run the demo
	2.2 To do a demonstration:
	2.3 Read Ellen's program

	3 DCI Examples
	3.1 BB2Shapes
	3.1.1 Run the program:
	3.1.2 Edit the program:
	3.1.3 Read the program

	3.2 BB3Greed
	3.2.1 Run the program:
	3.2.2 Edit the program:
	3.2.3 Read the program

	3.3 BB4Plan
	3.3.1 Run the program:
	3.3.2 Edit the program:
	3.3.3 Read the program

	3.4 BB5Bank
	3.4.1 Run the demo program:
	3.4.2 Edit the demo program:
	3.4.3 Read the demo program

	3.5 BB6PayBills
	3.5.1 Run the program:
	3.5.2 Edit the program:
	3.5.3 Read the program:

	3.6 BB7 - the Dijkstra Algorithm
	3.6.1 Run the program:
	3.6.2 Edit the program:
	3.6.3 Read the program

	3.7 BB8 - MoveShape example
	3.7.1 Run the program:
	3.7.2 Edit the program:
	3.7.3 Read the program

	3.8 BB9Planning: An Activity Planning Example (aka Prokon)
	3.8.1 End-User Mental Model
	3.8.2 Program Architecture
	3.8.3 Run the program:
	3.8.4 Edit the program:

	3.9 BB10: Frame

	4 Squeak Reverse Engineering (SRE)
	4.1.1 Edit the Program
	4.2 The SRE Context browser
	4.3 SRE Object Inspector

	5 Persistent workspace
	5.1.1 Open a new persistent workspace

