
Module 4 1

Module 4: The System Transcript, Class Point
and Inspectors

This module starts by introducing the System Transcript, illustrating how it can

be used with a number of examples. The Transcript is also used to introduce

Global Variables, and the TextCollector class is briefly mentioned. The Transcript

is also used as a vehicle to introduce cascaded expressions, again with many

examples.

This module also introduces, as an example, the class Point. This illustrates

aspects of the use of class and instance protocol, the use of instance variables, and

the “information hiding” and “encapsulation” aspects of the object–oriented

approach. Class Point is used to illustrate the use of Inspectors, with many

examples.

Module 4: The System Transcript, Class Point and Inspectors..........................1
4.1. Introduction...2
4.2. Using the System Transcript..2
4.3. Global Variables..4
4.4. Cascading Expressions..6
4.5. Class Point..8

4.5.1. Creating a new Point...9
4.5.2. Accessing..9
4.5.3. Comparing...10
4.5.4. Arithmetic...10
4.5.5. Truncation and Rounding...10
4.5.6. Polar Co-ordinates...10
4.5.7. Point Functions..11

4.6. Alternative Representations for Class Point..11
4.7. Inspecting Instances of Classes...12
4.8. Other Inspectors..16

© Trevor Hopkins and Bernard Horan, 1994

Module 4 2

4.1. Introduction

The System Transcript (or just Transcript) is primarily used to display warnings

or useful information. For example, when you run an explicit garbage collection

operation (by selecting the Collect Garbage item from the File menu on the

Launcher), a message is printed in the Transcript indicating how much memory

space was reclaimed, as well as other (possibly) useful information (figure 4.1).

Similarly, when you save the VisualWorks image (see module 2), some

comments are printed in the Transcript.

Figure 4.1: The System Transcript

The Transcript can also be used as a general–purpose text output area, which is

very useful for displaying the results of computations which do not require

sophisticated presentation. This module starts by describes how to use the

Transcript in this way.

4.2. Using the System Transcript

The System Transcript is like an ordinary Workspace (see module 3), except that

it has the additional property of being able to display messages generated from

anywhere within VisualWorks. So, the Transcript has the usual Workspace

<operate> button menu, and you can type, edit and evaluate expressions just as if

it was a Workspace.

You will already have seen a Transcript open on the screen as part of the

Launcher when you started VisualWorks. You are advised to have the

Transcript open at all times, so that you do not miss any important messages

which might be displayed. The inclusion of the Transcript is controlled by the

System Transcript check–box on the Tools menu of the Launcher.

© Trevor Hopkins and Bernard Horan, 1994

Module 4 3

The Transcript is referenced by a global variable Transcript. Global variables can

be accessed from any part of the image (see later). The global variable Transcript

actually refers to an instance of class TextCollector. The most useful message

understood by Transcript (and other instances of TextCollector) is show: ; the

argument to this keyword message should be a String. When the object

referenced by the global variable Transcript receives the message show: , the

argument string is added to the contents of the Transcript.

For example, select and evaluate the following expression in a Workspace, using

the d o i t option from the <operate> button menu:

Transcript show: 'Hello, world!'.

The result is shown in figure 4.2.

Figure 4.2: Displaying messages using the System Transcript

Another useful message understood by instances of TextCollector is cr, which

starts a new line. Other useful messages include space , which inserts a single

blank space, and tab, which inserts enough blank space to move to the next

tabbing position. The tab message is very useful to allow text output to be lined

up neatly — remember that VisualWorks uses proportionally–spaced fonts for

© Trevor Hopkins and Bernard Horan, 1994

Module 4 4

displaying characters, so that it is impossible to line up text output using only

spaces.

We’ve already seen in module 2 that every object in the image understands the

message printString. The response to the message is a string containing a suitable

printable representation of the receiving object. Since everything in the

VisualWorks image is an object, this means that we can print out some

representation of anything within the image. The printString method is defined

in class Object; the default printing method used to implement this (printOn:) is

frequently re–defined in subclasses of Object.

Using Transcript and the printString message together provides a very useful way

of printing out the results of computations. For example, if the following

expression is selected and evaluated using d o i t, the number 1024 will be

printed in the Transcript.

Transcript show: (2 raisedTo: 10) printString

Omitting the printString message is a very common source of programming

errors.

Finally, you should note that the System Transcript only retains the last ten

thousand characters inserted into it.

Ex 4.1: Try some further example messages sent to Transcript. You might like to try some of
the expressions below:

Transcript show: 'Good-bye, World!'

Transcript cr. Transcript tab. Transcript show: 'String on a new line'.

Transcript show: (3+4) printString

Transcript show: (22/7) printString

Transcript cr. Transcript show: (42 raisedTo: 42) printString

Ex 4.2 Try getting an instance of SpendingHistory to print itself in the Transcript.

Ex 4.3 Try using the System Browser to browse class TextCollector. Find out what other
messages Transcript can respond to. Try out some of these messages. (This class can be
found in category Interface-Transcript.)

4.3. Global Variables

The System Transcript illustrates the use of a global variable: a variable name

that can be used from anywhere within the image. This is in contrast to the other

kinds of variables introduced in module 2: instance variables, which are only

accessible from within a particular object, and temporary variables, which are

© Trevor Hopkins and Bernard Horan, 1994

Module 4 5

only accessible within a particular method or block. Another important kind of

variable, the class variable, is introduced in module 5.

All global variables start with an initial capital letter, unlike instance and

temporary variables. Global variables are usually used to refer to objects which

we wish to have a long lifetime. For example, the names of classes (names like

Object, Number and so on) are global variables. Several other important objects

are referred to by global variables within the image, including the object that

controls the Smalltalk processes (Processor — see module 9).

In fact, all global variables within the image are stored in a single table called the

system dictionary. This is an instance of class SystemDictionary which itself is a

subclass of Dictionary (described in module 7). The system dictionary is referenced

by the global variable Smalltalk; this means that the global variable Smalltalk

appears in the system dictionary referred to by that variable (i.e. is a circularity).

You can look at the contents of the VisualWorks system dictionary by printing its

contents in a Workspace (remember that every object in the image can be printed

out). Selecting and evaluating (using print it) the following expression is one

convenient way of doing this.

Smalltalk keys asSortedCollection

This will display the names of every global variable in the image, including the

names of all the classes. You can also more conveniently inspect the contents of

the VisualWorks system dictionary using an Inspector (see later).

Global variables are usually declared simply by typing and “accepting” the name

of the new variable (with an initial capital letter, of course). If the variable does

not already exist, a Confirmer will appear, asking what kind of variable is

required. You should select the global option (see figure 4.3). You could also

select the Correct It option, if you had mis–typed the variable name.

Alternatively, the new global variable name, together with the object to which it

refers, can be inserted directly into the system dictionary, using an expression

like:

Smalltalk at: #NewGlobal put: (55/7).

Global variables can be removed using the following expression:

Smalltalk removeKey: #NewGlobal.

© Trevor Hopkins and Bernard Horan, 1994

Module 4 6

Figure 4.3: Declaring a Global variable

It should be pointed out that new global variables are relatively rare in

VisualWorks applications, and extensive use of globals suggests that the

structure of the application has not been well thought out. A global variable

should only be used if you are quite sure that there should never be more than

one object with these particular properties.

Ex 4.4: Look at the contents of the system dictionary Smalltalk, by printing it out in a
Workspace (or in the Transcript).

Ex 4.5: Try creating new global variables, in both of the ways described in this section.
Also, try removing the global variables you have created.

Ex 4.6: What happens if you try and declare a global variable which does not start with
an upper–case letter? Try it and find out.

4.4. Cascading Expressions

You will have seen in the examples and exercises earlier in this module how it is

frequently necessary to send several messages in sequence to the System

Transcript. In general, repeated message sends to the same object occur quite

frequently. To aid this, a syntactic form called “cascading” is provided. This uses a

different separator character ‘;’ (semi–colon).

For example, the following sequence of expressions might be used:

Transcript cr.
Transcript show: 'The result of 6 times 7 is'.
Transcript tab.

© Trevor Hopkins and Bernard Horan, 1994

Module 4 7

Transcript show: (6*7) printString.
Transcript cr.

A series of messages (cr, show:, tab and so on) is sent to the same object

(Transcript). Clearly, the repeated use of the global variable name Transcript

involves tedious repeated typing.

These expressions could be re–written using a cascade, to avoid using the

Transcript identifier quite so often:

Transcript cr ;
show: 'The result of 6 times 7 is' ;
tab ;
show: (6*7) printString ;
cr.

You should be able to see that exactly the same sequence of messages has been

sent. In both cases, five messages are sent to the Transcript. (Here the message

expressions have been spread over several lines for clarity — it is not necessary

to do this in practice.)

The use of cascade expressions frequently results in fewer, shorter expressions,

with fewer temporary variables being used. However, any cascaded expression

can be re–written as a sequence of message–sends without cascades, possibly with

the addition of temporary variables. In some cases, the expressions may be much

easier to understand in a form without cascades.

It is important to stress the difference between cascaded and ordinary

concatenated message sends. Consider the following two expressions:

receiverObject message1 message2.

receiverObject message1 ; message2. "Note the cascade."

In the first expression, receiverObject receives message1, and evaluates the

appropriate method. This method answers with another object; it is this n e w

object that receives message2. In the second case, receiverObject receives

message1 as before and evaluates the corresponding method. However, this

new object is discarded, and it is receiverObject again which then receives

message2. The two expressions are equivalent only if message1 answers with

self; i.e. receiverObject itself.

Ex 4.7: Try rewriting some of the Transcript examples from Ex 4.1 using cascades.

Ex 4.8: The following expressions create an Array containing three strings using a sequence of
at:put: messages. Re–write these as three expressions using cascades, keeping the
temporary variable array.

© Trevor Hopkins and Bernard Horan, 1994

Module 4 8

| array |
array := Array new: 3. "Create a new Array, length 3."
array at: 1 put: 'first'. "Put a string in the first location."
array at: 2 put: 'second'. "Put a string in the second location."
array at: 3 put: 'third'. "Put a string in the third location."
Transcript cr. "New line in the Transcript."
Transcript show: array printString. "Print the array in the Transcript."

Ex 4.9 (Much harder.) Try rewriting the above as a single expression, but with all the
same message sends, removing the temporary variable array. Hint : you may need to
use the message yourself , implemented in class Object.

4.5. Class Point

Class Point represents the abstract notion of locations in a two–dimensional

plane. This is a particularly useful idea, especially when we are interested in

manipulating objects on a (two–dimensional) display screen. Points are very

widely used within VisualWorks, particularly in conjunction with rectangles

(see module 6).

0

1

2

3

4

5

6

7 8 9

0

1 2 3 4 5 6Origin
X axis

Y axis

Point x: 3 y: 4.5 (3@4.5)

Figure 4.4: The VisualWorks co-ordinate scheme

Internally, a Point is represented in cartesian (rectangular) co-ordinates, although

other representations are possible (see later). Two instance variables are defined,

x and y, giving the displacement from the origin in the horizontal and vertical

directions respectively. Unusually, the co-ordinate scheme is left–handed (see

© Trevor Hopkins and Bernard Horan, 1994

Module 4 9

figure 4.4), so that, while the x–axis runs left–to–right, the y–axis runs top–to–

bottom. (Conventionally, the y–axis runs bottom–to–top.) This is because

VisualWorks is frequently concerned with the display of text — usually

displayed left–to–right and top–to–bottom.

4.5.1. Creating a new Point

Sending the message new to a class will usually result in a new instance of that

class. When the class Point receives the message new , the corresponding method

returns a new instance of Point with both x and y instance variables uninitialized

— i.e. each with a reference to the undefined object nil (see module 2). In other

words, a Point is created which represents nowhere in particular. We will then

have to define the instance variables by sending further messages to the newly–

created instance. What we really want is a way of creating initialised instances of

class Point — i.e. with their instance variables suitably defined.

An instance creation class method is already available by which initialised

instances of Point may be created. This method is called x: y:, and allows new

instances to be created with the x and y instance variables initialised by the

argument numbers, for example:

Point x: 3 y: 4.5.

or,

Point x: 2 y: 3.

This is a slight improvement; it is now easier to create initialised instances.

However, since points are so widely used, a shorthand way of creating points is

provided. The message @ (a binary message selector) is understood by instances

of subclasses of Number (see module 6). This answers with a new instance of

Point, created from the receiver (for the x–co-ordinate) and the argument (for the

y–co-ordinate). This means that points can be expressed simply as 2@3. This

mechanism for creating new points using @ is so widely used that the same

format is adopted when points are printed.

Class Point has a large number of methods available. You are advised to spend

some time browsing this class. The instance protocols provided include:

4.5.2. Accessing

The current values of the x and y instance variables can be accessed, using the

messages x and y respectively. The corresponding methods (also called x and y)

simply return the current value of the appropriate instance variable. Similarly,

© Trevor Hopkins and Bernard Horan, 1994

Module 4 10

the instance variables can be set using the x: and y: messages. You should note

that the relationship between the instance variable names x and y, and the

method names x and y is simply one of convenience; there is no a priori reason

why they should have the same names. However, giving the same names to

instance variables, and to methods that access those instance variables (often

called simply access methods) is conventional, and frequently used.

4.5.3. Comparing

Methods are provided to compare Points for equality (=), and various kinds of

inequality (<, >, <=, >=, ~=, and so on). For example, a Point is “less than” another

Point if it is both above, and to the left of the first Point; i.e. closer to the origin in

both co-ordinates.

4.5.4. Arithmetic

All the usual arithmetic operations (+ and so on) are defined on Points. For

example:

(3 @ 4.5) + (12.7 @ -3)

((22 / 5) @ 14) - (2 @ 13)

(3 @ 4) * (2 @ 2)

(99 @ 100) / (4 @ 4)

(-14 @ 13.95) abs

These methods also work if the argument is a scalar (any kind of number), rather

than a Point. Examples:

(3 @ 4.5) + 12

(3 @ 4) / (22 / 7)

4.5.5. Truncation and Rounding

The rounded method answers with a new Point with x and y values converted to

the nearest integer values. The truncate: method answers with a new point with x

and y values truncated so that they lie on a grid specified by the argument

(another Point).

4.5.6. Polar Co-ordinates

The r method answers with the distance of the Point from the origin. The theta

method answers with the angle (in radians) from the x–axis. These methods

allow locations to be converted to polar co-ordinate form.

© Trevor Hopkins and Bernard Horan, 1994

Module 4 11

4.5.7. Point Functions

Several useful methods are provided in this protocol. These include: dist:, giving

the absolute distance between the receiver and argument Points, and transpose,

which answers with a new Point with x and y swapped over.

There are several other instance protocols provided, which are not considered

here.

Ex 4.10: Try creating various instances of class Point, using each of the instance creation
methods mentioned above. Use the show: and printString messages to display the
values in the Transcript.

Ex 4.11: Browse class Point; this class can be found in category Graphics-Geometry. Using the
System Browser, find out the effect of dividing a Point by an integer. Type in and
evaluate (using print i t) an expression to find out if your answer is correct.

Ex 4.12: Try out some of the methods defined in the point functions and polar co-ordinates
protocols. For example, find out the result of each of the following expressions:

101.7@77.1 grid: 4@4.

43@17 dist: 45@103.

(4@3) r.

(4@3) theta.

Ex 4.13: (Harder.) The dist: method in the point functions instance protocol answers with
the absolute (positive) distance between the argument and receiver Points. This is
the length of a straight line joining these two Points. In manhattan geometry,
motion is not permitted in arbitrary directions, but must follow horizontal and
vertical lines only. (This is just like travelling in a modern city, laid out as a series
of “blocks” — hence the name!). Write a new method called manhattan:, in the
point functions instance protocol of class Point, which answers with the absolute
distance between the receiver and argument Points, when travelling only in
horizontal and vertical directions.

4.6. Alternative Representations for Class Point

It is worth observing at this point that the internal representation of class Point

(in cartesian co-ordinates) is not the only possible way in which locations in two–

dimensional space can be specified. For example, in a polar co-ordinate

representation, a location is specified as a distance (‘r’) from a defined origin,

together with an angle (‘theta’) from a defined axis through that origin (see

figure 4.5).

It would be perfectly feasible to implement class Point so that each instance had

instance variables r and theta. When the message x was sent, for example, the

corresponding method would have to compute the appropriate value from r and

theta. However, methods such as r could be implemented simply to answer with

the value of the corresponding instance variable. All the other methods

© Trevor Hopkins and Bernard Horan, 1994

Module 4 12

currently implemented by class Point could be re–implemented using the new

instance variables.

0

1

2

3

4

5

6

7 8 9

0

1 2 3 4 5 6Origin

Point r: 5.40833 theta: 0.982835

theta reference axis

Figure 4.5: Alternative representation for class Point

Thus, it is possible to implement class Point in a completely different way but,

provided that the same methods were implemented to give the same result,

there would be no change as far as any other object in the image is concerned.

This illustrates the information–hiding features provided by an object–oriented

system.

Class Point is actually implemented using x and y instance variables for

performance reasons. As points are most frequently used to describe rectangular

areas (such as panes on the screen), the cartesian operations are the ones most

frequently used.

Ex 4.14: Implement a new class NewPoint that behaves just like Point, but using a different
internal representation as suggested above.

4.7. Inspecting Instances of Classes

We have already investigated the use of Browsers to view the source code of the

methods associated with various classes. The effect that a message sent to an

instance of some class can be determined by examining the appropriate method.

However, the only way we have so far discovered to find out the state of a

particular instance is to print it out (in the Transcript, or using print it from the

© Trevor Hopkins and Bernard Horan, 1994

Module 4 13

<operate> menu). This is clearly less than satisfactory, and we need a better way

of viewing the internal state of an object.

All objects understand the message inspect . This is implemented in class Object

to open a new kind of window called an Inspector on that object. For example, to

inspect an instance of class Point, the following expression can be used:

(Point x: 3 y: 4.5) inspect

Since objects are inspected so frequently, an inspect option is provided on the

<operate> menu associated with Workspaces and other text editing windows. In

either case, an Inspector is opened (figure 4.6).

Figure 4.6: Inspecting an instance of class Point

An Inspector is labelled with the class of the object being inspected, and consists

of two panes. The left–hand pane is a list of the instance variables of the object

(like the lists in the top part of a System Browser) plus the pseudo–variable self,

representing the actual object being inspected. One of the items can be selected

from this list; the right–hand pane, which is an ordinary text pane (like a

Workspace), displays the current value of that instance variable. In this way, we

can inspect any object in the image in some detail.

The left–hand pane has an <operate> menu; this has one item (inspect), which

allows the selected instance variable to be inspected; another Inspector is

© Trevor Hopkins and Bernard Horan, 1994

Module 4 14

spawned on that object. This allows complex structures of interrelated objects to

be explored.

Since the right–hand pane of the Inspector is a Workspace, we can select and

evaluate expressions in the usual way. However, we can also write expressions

which use the named instance variables, and the pseudo–variable self (see

figure 4.7). We say that the expressions we select and evaluate are evaluated “in

the context of the object being inspected”.

Figure 4.7: Evaluating an expression using self,
in the context of the inspected object

As well as being able to view the values of instance variables of any object,

Inspectors also allow us to modify these values. Any expression can be typed into

the right–hand pane of an Inspector; if the accept option is selected from the

<operate> menu (figure 4.8), then the resulting object is used as the new value of

the instance variable (figure 4.9). You should note that you cannot change self in

this way.

© Trevor Hopkins and Bernard Horan, 1994

Module 4 15

Figure 4.8: Changing the value of a Point’s instance variable,
using an Inspector

Figure 4.9: The result of changing an instance variable using an Inspector

It should be pointed out that Inspectors allow direct access to the instance

variables of the object being inspected, and therefore deliberately break the

© Trevor Hopkins and Bernard Horan, 1994

Module 4 16

information–hiding notion which is central to object–oriented programming.

Thus, they should be used for testing and debugging purposes only.

Ex 4.15: Create and inspect various instances of class Point, in the ways suggested above.
Look at the values of the instance variables. You might also like to try inspecting
other objects you already know about. Experiment with the inspect option from
the <operate> menu in both the left–hand and the right–hand panes of the
Inspector.

Ex 4.16: Try evaluating some expressions using the values of instance variables, or self (as in
figure 4.8, for example). Also, try modifying the value of an instance variable, by
typing an expression and using the accept menu item.

4.8. Other Inspectors

A small number of special Inspectors are provided for instances of certain classes.

In particular, Inspectors are implemented for instances of class OrderedCollection

(see module 8) and its subclasses (figure 4.10), as well as instances of class

Dictionary (module 7) and its subclasses (figure 4.11). Both these Inspectors have

extra items on their <operate> menus.

Figure 4.10: Inspecting an OrderedCollection

© Trevor Hopkins and Bernard Horan, 1994

Module 4 17

Figure 4.11: Inspecting the System Dictionary

Ex 4.17: Try inspecting the system dictionary Smalltalk, which contains all the global
variables in the image. Warning: be very careful not to remove anything from this
dictionary!

Ex 4.18: You might like to try inspecting a class, to find out its internal structure.

© Trevor Hopkins and Bernard Horan, 1994

